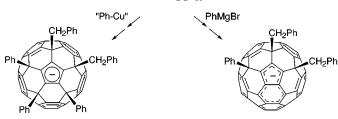
2000 Vol. 2, No. 13 1919–1921

Stepwise Synthesis of Fullerene Cyclopentadienide R₅C₆₀⁻ and Indenide R₃C₆₀⁻. An Approach to Fully Unsymmetrically Substituted Derivatives

Masaya Sawamura,*,† Motoki Toganoh, Kazuhiro Suzuki, Atsushi Hirai, Hitoshi likura, and Eiichi Nakamura*


Department of Chemistry, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

nakamura@chem.s.u-tokyo.ac.jp

Received April 27, 2000

ABSTRACT

1,4-(PhCH₂)₂C₆₀

Fullerene cyclopentadienide (PhCH₂)₂Ph₃C₆₀⁻ and indenide (PhCH₂)₂PhC₆₀⁻, each bearing two different organic groups, were efficiently synthesized through regionselective reactions of 1,4-(PhCH₂)₂C₆₀ with an organocopper reagent (PhMgBr/CuBr·SMe₂) or a Grignard reagent (PhMgBr) followed by deprotonation with KO/Bu.

We reported earlier the synthesis of cyclopentadienes (R_5HC_{60} ; R=Ar, Me) and cyclopentadienides ($R_5C_{60}^-$) embedded in C_{60} through quantitative 5-fold organocopper addition to C_{60} . The pentakis addition is so effective that a variety of $R_5C_{60}^-$ compounds have been prepared, in many cases, in a quantitative yield; nonetheless, the method is totally unsuitable for the synthesis of compounds bearing different R groups or for the synthesis of C_{60} derivatives bearing fewer than five substituents. Here we report strategies for the installation of two different R groups totaling three and five in number as demonstrated through synthesis of new cyclopentadienide and indenides, $K^+[(PhCH_2)_2Ph_3C_{60}]^-$ (3) and $K^+[(PhCH_2)_2PhC_{60}]^-$ (5).

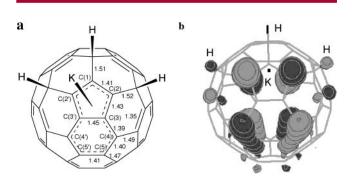
We are currently postulating that the 5-fold organocopper addition to C_{60} proceeds through a sequential addition/oxidation process involving nucleophilic attacks of R_2Cu^- species and one-electron oxidation by a Cu(I) salt. Formation of a 1,4-diorgano-1,4-dihydro[60]fullerene (1,4- R_2C_{60})² and 1,4,11,30-tetraorgano-1,4,11,30-tetrahydro-[60]fullerene (1,4,11,30- R_4C_{60})³ as transient intermediates are being postulated. Along such a line of reasoning, we considered that the reaction of 1,4- R_2C_{60} with an organocopper reagent

[†] E-mail: sawamura@chem.s.u-tokyo.ac.jp.

^{(1) (}a) Sawamura, M.; Iikura, H.; Nakamura, E. J. Am. Chem. Soc. 1996, 118, 12850–12851. (b) Sawamura, M.; Iikura, H.; Ohama, T.; Hackler, U. E.; Nakamura, E. J. Organomet. Chem. 2000, 599, 32–36. (c) Sawamura, M.; Toganoh, M.; Kuninobu, Y.; Kato, S.; Nakamura, E. Chem. Lett. 2000, 262–263. (d) Sawamura, M.; Iikura, H.; Hirai, A.; Nakamura, E. J. Am. Chem. Soc. 1998, 120, 8285–8286.

^{(2) (}a) Nagashima, H.; Terasaki, H.; Kimura, E.; Nakajima, K.; Itoh, K. J. Org. Chem. 1994, 59, 1246—1248. (b) Subramanian, R.; Kadish, M. K.; Vijayashree, N. M.; Gao, X.; Jones, T. M.; Miller, D. M.; Krause, K. L.; Suenobu, T.; Fukuzumi, S. J. Phys. Chem. 1996, 100, 16327—16335. (c) Miki, S.; Kitao, M.; Fukunishi, K. Tetrahedron Lett. 1996, 37, 2049—2052. (d) Kitagawa, T.; Tanaka, T.; Tanaka, Y.; Takeuchi, K.; Komatsu, K. J. Org. Chem. 1995, 60, 1490—1491. (e) Wang, G.-W.; Murata, Y.; Komatsu, K.; Wan, T. S. M. J. Chem. Soc., Chem. Commun. 1996, 2059—2060. (f) Fukuzumi, S.; Suenobu, T.; Hirasaka, T.; Arakawa, R.; Kadish, K. M. J. Am. Chem. Soc. 1998, 120, 9220—9227.

⁽³⁾ Murata, Y.; Shiro, M.; Komatsu, K.. J. Am. Chem. Soc. 1997, 119, 8117-8118


R'₂Cu⁻ would afford the mixed organohydrofullerene R₂R'₃-HC₆₀. We have chosen (PhCH₂)₂C₆₀ (1)^{2b,c,f} as a starting material of the present studies because of its availability and the high solubility in organic solvent. To our satisfaction, the reaction of 1 (1,2-dichlorobenzene/THF, 25 °C, 2 h) with an excess amount of an organocopper reagent prepared from PhMgBr (15 equiv) and CuBr·SMe₂ (15 equiv) (after quenching with aqueous NH₄Cl) gave (PhCH₂)₂Ph₃H (2a-c) quantitatively as a mixture of three isomers (Scheme 1).

Purification by HPLC (Bucky Prep, Nacalai Tesque Co.) afforded an analytically pure material in 86% yield. Treatment of the solution of the isomeric mixture of **2** in THF with an excess KO'Bu (1.2 equiv) at 20 °C caused immediate color change from dark red to very dark brown. The 1 H and 13 C NMR (THF- d_8) showed that the isomeric mixture converged into a single cyclopentadienide K⁺[(PhCH₂)₂Ph₃C₆₀]⁻ (**3**) with C_s symmetry. This result indicates that the isomerism in **2** arises from the positional isomers of the cyclopentadiene moiety as shown for **2a**–**c** and, therefore, that the three phenyl groups were regions electively installed in such a manner that one of the C₆₀ pentagons became isolated from the remainder of the C₆₀ core to form a cyclopentadiene.

It is known that a Grignard reagent reacts with C_{60} in a 1,2-monoaddition manner.⁴ We have conjectured that the reaction of 1,4- R_2C_{60} with a Grignard reagent will take place only once to give a triorganomonohydrofullerene. In light of our previous knowledge on a regioselectivity in the 3-fold addition reaction of C_{70} , we considered that the reaction would give **5**. According to this scenario, we have carried out the reaction of 1,4-(PhCH₂)₂ C_{60} (1) with PhMgBr. The reaction of 1 proceeded smoothly in 1,2-dichlorobenzene at 22 °C in the presence of 3.6 equiv of PhMgBr (1 M in THF) and, after hydrolysis with aqueous NH₄Cl and HPLC

purification (Bucky Prep), gave (PhCH₂)₂PhHC₆₀ (**4a,b**) in 72% yield as a mixture of two isomers (100% conversion of C₆₀). The structure of (PhCH₂)₂PhHC₆₀ was assigned in the manner similar to the one employed for **2**; namely, deprotonation with KO'Bu formed a single C_1 symmetric potassium salt K⁺[(PhCH₂)₂PhC₆₀]⁻ (**5**) (Scheme 2).

Optimized structure of a C_s symmetric model compound $C_{60}H_3K$ (6) (HF/3-21G^(*), total energy = -2857.00417344 hartree, Figure 1a)⁵ shares some important features with that

Figure 1. (a) Part of the optimized structure of **6** at the HF/3-21G(*) level. C–C bond lengths (Å) are affixed to the respective bonds. K–C bond lengths (Å): K–C(1), 3.08; K–C(2), 2.98; K–C(3), 2.93. (b) HOMO surface of **6**.

of its C_{70} analogue, $C_{70}H_3Li$ reported previously. ^{1d} Thus, the fully delocalized $10-\pi$ indenyl framework is separated from the remaining $48-\pi$ electron system by the seven surrounding C-C bonds of rather long bond lengths $(1.47-1.52 \text{ Å}).^6$ The pentagon of the indenyl moiety coordinates to the metal center in an η^5 -fashion. The HOMO surface of **6** depicted in Figure 1b represents a typical indenyl HOMO and shows remarkable resemblance to that of $C_{70}H_3Li$. Such an effective π electron delocalization within the indenyl framework of **6**

Org. Lett., Vol. 2, No. 13, 2000

^{(4) (}a) Fagan, P. J.; Krusic, P. J.; Evans, D. H.; Lerke, S. A.; Johnston, E. *J. Am. Chem. Soc.* **1992**, *114*, 9697–9699. (b) Hirsch, A.; Grösser, T.; Skiebe, A.; Soi, A. *Chem. Ber.* **1993**, *126*, 1061–1067.

⁽⁵⁾ Hehre, W.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. Ab Initio Molecular Orbital Theory; Wiley: New York, 1986.

⁽⁶⁾ The most obvious difference is found in the shorter C(3)-C(4) bond length (1.39 Å) of **6**.

⁽⁷⁾ Note that the indenyl plane of $C_{70}H_3Li$ is rather flat due to the decreased degree of curvature in the equatorial belt region of C_{70} cage.

is surprising if one consider the highly bent structure of the indenyl plane.⁷

In conclusion, we have shown that the cyclopentadiene $(R^1{}_2R^2{}_3HC_{60}, R^1{}_2R^2HC_{60})$ and cyclopentadienide $(R^1{}_2R^2{}_3C_{60}^-, R^1{}_2R^2C_{60}^-)$ bearing two different organic substituents can efficiently be synthesized by stepwise methods by way of 1,4-diorganofullerene.² Since unsymmetrical 1,4-diorganofullerene RR'C₆₀ of various combination of R and R' can be prepared through trapping of RC_{60}^- with an electrophile, ^{2d-f} we can fully expect that one can now synthesize a wide variety of analogues of R_5HC_{60} and R_3HC_{60} bearing various different organic substituents. The structure diversity thus created on a spherical platform will open new opportunities

on application of the densely functionalized, geometrically well-defined compounds in various fields.

Acknowledgment. This work was supported by Monbusho, Grant-in-Aid for Scientific Research on Priority Area (No. 283, Innovative Synthetic Reactions).

Supporting Information Available: Experimental procedures and characterization for compounds **2–5**. This material is available free of charge via the Internet at http://pubs.acs.org.

OL005993K

Org. Lett., Vol. 2, No. 13, **2000**